Acta Cryst. (1998). C54, 1609-1612

$\mathrm{A}\left[\left\{\mathrm{TiCl}_{2} \text { (isodiCp) }\right\}_{2}(\mu-\mathrm{O})\right]$ Dimer and a Twinned Cyclic [TiCl(isodiCp) $(\mu-\mathbf{O})]_{4}$ Tetramer

Judith C. Gallucci, Natasha Kozmina and Leo A. Paquette
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA. E-mail: gallucci.1@osu.edu

(Received 27 January 1998; accepted 15 May 1998)

Abstract

The μ-oxo dimer μ-oxo-bis dichloro[($1,2,3,3 \mathrm{a}, 7 \mathrm{a}-\eta$)-4,5,6,7-tetrahydro-4,7-methano- $1 H$-indenyl]titanium $\}$, [$\mathrm{Ti}_{2} \mathrm{Cl}_{4}(\mu-\mathrm{O})\left(\mathrm{C}_{10} \mathrm{H}_{11}\right)_{2}$], and the μ-oxo cyclic tetramer, cyclo-tetra- μ-oxo-tetrakis \{chloro[(1,2,3,3a,7a- η)-4,5,6,7-tetrahydro-4,7-methano-1 H -indenyl]titanium $\}$, $\left[\mathrm{Ti}_{4} \mathrm{Cl}_{4}(\mu\right.$ $\mathrm{O})_{4}\left(\mathrm{C}_{10} \mathrm{H}_{11}\right)_{4}$], have been synthesized by electrophilic attack of TiCl_{4} on the exo-trimethylsilyl derivative of isodiCp (isodiCp is the isodicyclopentadienide anion or 4,5,6,7-tetrahydro-4,7-methano- $1 H$-indene) in the presence of trace amounts of moisture. Both structures are endo isomers, with each Ti atom bonded in a η^{5} manner to the Cp ring of the isodiCp ligand. Both display a slight bending of the isodiCp group about the bond common to the Cp ring and the norbornane fragment, such that the norbornane group is displaced in the direction away from the Ti atom. The dihedral angles which describe this bending are $9.0(3)$ and $10.2(3)^{\circ}$ for the dimer, and $9.2(2)^{\circ}$ for the tetramer. The dimer contains a bent $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ angle of $159.5(2)^{\circ}$. The tetramer forms tetragonal crystals, which are twinned by merohedry on the (110) plane. The tetramer molecule contains a crystallographic $\overline{4}$ axis, with the Ti atoms linked by the O atoms in a μ-oxo manner to form an eight-membered ring.

Comment

A reliable and useful protocol for controlling the facial selectivity associated with the complexation of transition metals to C_{1}-symmetric cyclopentadienyl anions involves prior silylation (Paquette et al., 1983) and chromatographic separation of the silane diastereomers. Subsequent electrophilic attack by the metal reagent proceeds with inversion of configuration (Paquette \& Sivik, 1992). Recently, this technique was applied to the completely stereoselective preparation of endo- and exo(isodiCp)trichlorotitanium complexes (Gallucci et al., 1997) (isodiCp is the isodicyclopentadienide anion).

The silyl inversion methodology can effectively be used also to generate μ-oxo-(chloro)titanium complexes, thus making available analogs of (2) for direct compari-
son of ligand distortion and ligand orientation. A μ-oxo dimer, (3), and a μ-oxo tetramer, (4), have been synthesized and their structures are reported here. The difference in reaction conditions is subtle, resting on the level of trace amounts of moisture present in the reaction solvent.

The dimer structure, (3), consists of two TiCl_{2} (isodiCp) groups bonded together by a μ-oxo bridge (Fig. 1). In the tetramer structure, (4), there is a $\overline{4}$ axis through the center of the molecule, so that the asymmetric unit consists of $\mathrm{TiOCl}($ isodiCp). The O atoms bond the Ti atoms in a μ-oxo manner to form the cyclic tetramer (Fig. 2). There are two cyclic tetramers in the unit cell. These two structures have features in common with each other and with the endo-isomer (2). First of all, the Ti atom is bonded in an endo fashion to the isodiCp ligand in all three structures. Each isodiCp moiety is bent slightly about the bond common to the Cp ring and the norbornane fragment [$\mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{Cll}-\mathrm{C} 15$ for (3), and $\mathrm{Cl}-\mathrm{C} 5$ for (4)], and this bending moves the norbornane fragment in the direction away from the Ti atom. The bending can be described by the dihedral angle between the least-squares planes through atoms $\mathrm{C} 1-\mathrm{C} 5$ and through atoms $\mathrm{C} 6, \mathrm{C}, \mathrm{C} 1$ and C 9 for one of the isodiCp ligands of (3), as an example. The two dihedral angles for (3) are 9.0 (3) and 10.2 (3) ${ }^{\circ}$, while that for (4) is $9.2(2)^{\circ}$. These dihedral angles are in the same direction and comparable in magnitude to that of $10.8(2)^{\circ}$ observed for (2). The geometry about each Ti atom is approximately tetrahedral, and each Ti is bonded in a η^{5} manner to a Cp ring. The $\mathrm{Ti}-\mathrm{Cp}$ (ring carbon) distances span a wide range for both structures: 2.291 (4)-2.458 (3) \AA for Til and 2.288 (4)-2.430 (4) \AA for Ti2 in (3), and 2.291 (3)-2.482 (2) \AA in (4). The two Ti-ring centroid distances in (3) are 2.051 (2) \AA for Til and 2.040 (2) \AA for Ti2. The Ti-ring centroid distance in (4) is slightly longer at 2.066 (1) A.

Fig. 1. The molecular structure of (3) drawn with 50% probability displacement ellipsoids for the non-H atoms. H atoms are represented by circles of arbitrary radii.

Fig. 2. The molecular structure of (4) drawn with 50% probability displacement ellipsoids for the non- H atoms. H atoms are represented by circles of arbitrary radii.

Close analogs of the dimer (Allegra \& Ganis, 1962; Thewalt \& Schomburg, 1977; Gowik et al., 1990) have previously been prepared and examined crystallographically. Structure (3) is similar to one of the two crystalline forms of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}_{2} \mathrm{l}_{2} \mathrm{O}\right.$, (5), which have been reported. One form, ($5 a$), contains a $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ angle of 180° and a $\mathrm{Ti}-\mathrm{O}$ distance of 1.777 (1) \AA, with the molecule containing a crystallographic inversion center (Allegra \& Ganis, 1962; Thewalt \& Schomburg, 1977). The Cp rings are oriented trans to each other in ($5 a$) with respect to a view down the $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ axis. The second form, ($5 b$), is comparable to (3) in that it has a bent $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ angle of $167.5(6)^{\circ}$, and $\mathrm{Ti}-$ O bond lengths of 1.801 (9) and 1.809 (9) \AA (Gowik et al., 1990). When viewed down the $\mathrm{Ti} \cdots \mathrm{Ti}$ axis, (3) and (5b) each show a $\mathrm{Ti}-\mathrm{Cl}$ bond of one Ti atom almost eclipsing a Ti-ring centroid bond of the other Ti atom.

Several μ-oxo tetrameric structures have been reported which are analogs of (4), e.g. [$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}(\mu-$ O) $]_{4}\left[(6)\right.$; Skapski \& Troughton, 1970], $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right)\right.$ -$\mathrm{TiCl}(\mu-\mathrm{O})]_{4}\left[(7) ;\right.$ Petersen, 1980] and $\left[\left({ }^{5}-\mathrm{C}_{9} \mathrm{H}_{11}\right) \mathrm{TiCl}-\right.$ $(\mu-\mathrm{O})]_{4}[(8) ;$ Samuel et al., 1984]. All of these structures, including (4), can be described in terms of an eight-membered ring of alternating Ti and O atoms, with the Ti atom additionally coordinated to a Cl atom and η^{5} coordinated to either a Cp ring or a substituted Cp ring. Structures (4) and (8) each contain a crystallographic $\overline{4}$ axis; their unit cells are metrically similar, but their space groups are different as (8) crystallized in $P \overline{4} 2_{1} c$. While (6) and (7) contain lesser crystallographic symmetry elements, they can also be described in terms of approximate $\overline{4}$ symmetry. In all these structures, the Ti atoms in the ring do not lie in a plane but are arranged in a butterfly conformation. The dihedral angle between two three-atom Ti planes can be used to describe this conformation. For example, in (4), the angle between the plane composed of $\mathrm{Ti}, \mathrm{Ti}^{2}$ and Ti^{3}, and the plane composed of $\mathrm{Ti}, \mathrm{Ti}^{3}$ and Ti^{4} is $157.58(1)^{\circ}$, where the labeling of the Ti atoms is in a cyclic manner about the ring.

Inspection of the packing arrangement of (4) in the unit cell gave a strong hint for the correct twin law (Fig. 3). The metrical symmetry of the tetragonal cell allows interchange of the a and b axes, but it is the placement of the molecule within the cell which results in the possibility of twinning. The cell for the minor twin component can easily pack along with the cell for the major twin component without interference from short intermolecular contacts.

Fig. 3. Unit-cell drawing for the major twin component of (4), viewed down the c axis.

Experimental

Compound (3) was synthesized by stirring (1) (4.89 mmol) with $\mathrm{TiCl}_{4}\left(4.89 \mathrm{mmol}\right.$) in dried (with KH and CaH_{2}) toluene (45 ml) for l h at 195 K and for 12 h at room temperature. Filtration, solvent evaporation and crystallization from toluene produced red crystals in 48% yield. Compound (4) was synthesized by stirring (1) $(6.8 \mathrm{mmol})$ with $\mathrm{TiCl}_{4}(7.8 \mathrm{mmol})$ in toluene $(75 \mathrm{ml})$ for 1 h at 195 K and for 10 h at room temperature. Similar work-up of the reaction mixture as with (3) produced orange-yellow crystals in 66% yield.

Compound (3)
Crystal data
$\left[\mathrm{Ti}_{2} \mathrm{Cl}_{4} \mathrm{O}\left(\mathrm{C}_{10} \mathrm{H}_{11}\right)_{2}\right.$]
$M_{r}=515.98$
Monoclinic
$P 2_{1} / c$
$a=16.555$ (1) \AA
$b=10.062(1) \AA$
$c=12.972$ (2) \AA
$\beta=93.153(8)^{\circ}$
$V=2157.6(4) \AA^{3}$
$Z=4$
$D_{x}=1.588 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-5S diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.776, T_{\text {max }}=0.861$
5489 measured reflections
4979 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.096$
$S=1.198$
4977 reflections
244 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}\left(F_{O}^{2}\right)+(0.0208 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected geometric parameters ($\AA,^{\circ}$) for (3)

Til-OI	1.802 (2)	Ti2-OI	1.816 (2)
Til-Cll	2.2498 (12)	Ti2- Cl 3	2.2429 (12)
Til- Cl_{2}	2.2538 (12)	Ti2-Cl4	2.2680 (12)
Til-Cl	2.419 (3)	Ti2-Cll	2.430 (4)
Til-C2	2.323 (4)	Ti2-C12	2.356 (4)
Til-C3	2.291 (4)	Ti2-Cl3	2.288 (4)
Til-C4	2.382 (4)	Ti2-C14	2.328 (4)
Til-C5	2.458 (3)	Ti2-C15	2.420 (4)
$\mathrm{Ol}-\mathrm{Til}-\mathrm{Cll}$	107.74 (9)	$\mathrm{O} 1-\mathrm{Ti} 2-\mathrm{Cl} 4$	102.19 (8)
$\mathrm{Ol}-\mathrm{Til}-\mathrm{Cl} 2$	100.88 (8)	$\mathrm{Cl} 3-\mathrm{Ti} 2-\mathrm{Cl} 4$	99.64 (5)
$\mathrm{Cl1}-\mathrm{Ti} 1-\mathrm{Cl} 2$	99.61 (5)	Til-OI-Ti2	159.53 (15)
$\mathrm{Ol}-\mathrm{Ti} 2-\mathrm{Cl} 3$	106.37 (9)		

Compound (4)

Crystal data
$\left[\mathrm{Ti}_{4} \mathrm{Cl}_{4} \mathrm{O}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{11}\right)_{4}\right]$
$M_{r}=922.16$
Tetragonal
$P 4_{2} / n$
$a=16.331(1) \AA$
$c=7.498(1) \AA$
$V=1999.7(3) \AA^{3}$
$Z=2$
$D_{x}=1.53 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Mo $K \alpha$ radiation
$\lambda=0.7093 \AA$
Cell parameters from 25 reflections
$\theta=12-15^{\circ}$
$\mu=1.077 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Rectangular rod
$0.35 \times 0.31 \times 0.19 \mathrm{~mm}$
Orange-yellow

Data collection

Rigaku AFC-5S diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.751, T_{\text {max }}=0.815$
5155 measured reflections
2315 independent reflections
1907 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.022$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-21 \rightarrow 21$
$k=0 \rightarrow 21$
$l=0 \rightarrow 9$
6 standard reflections every 150 reflections intensity decay: 5.5\%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.073$
$S=1.176$
2312 reflections
119 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0322 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=-0.213 \\
& \Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Extinction correction: none
Scattering factors from
International Tables for
Crystallography (Vol. C)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (4)

	$\mathrm{I} .798(2)$	$\mathrm{Ti}-\mathrm{C} 2$	$2.388(3)$
$\mathrm{Ti}-\mathrm{O}^{\prime}$	$1.802(2)$	$\mathrm{Ti}-\mathrm{C} 3$	$2.291(3)$
$\mathrm{Ti}-\mathrm{O}$	$2.2758(7)$	$\mathrm{Ti}-\mathrm{C} 4$	$2.322(2)$
$\mathrm{Ti}-\mathrm{Cl}$	$2.482(2)$	$\mathrm{Ti}-\mathrm{C} 5$	$2.441(2)$
$\mathrm{Ti}-\mathrm{Cl}$	$103.60(11)$	$\mathrm{O}-\mathrm{Ti}-\mathrm{Cl}$	$100.35(7)$
$\mathrm{O}^{\prime}-\mathrm{Ti}-\mathrm{O}$	$103 .(02(6)$	$\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$	$164.25(12)$
$\mathrm{O}^{\prime}-\mathrm{Ti}-\mathrm{Cl}$	Symmetry codes: (i) $y, \frac{1}{2}-x, \frac{1}{2}-z ;$ (ii) $\frac{1}{2}-y, x, \frac{1}{2}-z$.		

In (3), the two Ti-atom positions were located by the Patterson method (SHELXS86; Sheldrick, 1990). The rest of the molecule was obtained by phasing on these two atoms in DIRDIF (Parthasarathi et al., 1983). A linear decay correction was applied to the data (TEXSAN; Molecular Structure Corporation, 1995). Two reflections were omitted from the refinement because of large negative F_{o} values, i.e. ($\overline{16}, 7,6$) and $(12,3,4)$. For structure (4), the intensity statistics from the $N(Z)$ test appeared non-centrosymmetric (Howells et al., 1950). Since the systematic absences uniquely determined the space group as P_{2} / n, the structure was solved in this centrosymmetric space group. The setting chosen for this space group places the origin at the inversion center. The Ti atom was located by the Patterson method and the rest of the atoms were obtained by standard Fourier methods. Although the geometry and B values of this model looked reasonable at the isotropic level of refinement, the R value of
0.25 was too high, and there were many peaks in the difference electron-density map which could not be incorporated into the model. A twin model was then proposed such that the crystal is composed of two twin domains, with the reciprocal lattices of these two components being coincident: $I(h k l)=$ $(1-\alpha) I(h k l)+\alpha(\bar{k} \bar{h} \bar{l})$ In SHELXL93 (Sheldrick, 1993), this is incorporated into the least-squares refinement by a twin matrix of ($0 \overline{1} 0 / \overline{1} 00 / 00 \overline{1}$) and refinement of the twin fraction α. Application of this twin law resulted in a dramatic drop in the R factor to 0.076 [isotropic refinement on $I>3 \sigma(I)$] and a clean difference electron-density map. This is an example of a twin by merohedry with the crystal twinned on the (110) plane. A linear decay correction was applied to the data (TEXSAN; Molecular Structure Corporation, 1989). Averaging the symmetry equivalent reflections within the two measured octants, $(+h,+k,+l)$ and $(-h,+k,+l)$, resulted in an $R_{\text {int }}$ value of 0.022 . The twin fraction refined to a value of 0.334 (1). Three reflections were omitted from the refinement because of large negative F_{o} values, i.e. $(\overline{2}, 18,1),(\overline{1}, 14,2)$ and $(\overline{1}, 17,1)$. H atoms for both structures were included in the model at calculated positions using a riding model, with aromatic C $\mathrm{H}=0.93$, secondary $\mathrm{C}-\mathrm{H}=0.97$, tertiary $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (bonded C atom). PLATON (Spek, 1990) was used to calculate some metric parameters.

For both compounds, data collection: MSCIAFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995) for (3); TEXSAN (Molecular Structure Corporation, 1989) for (4). For both compounds, program(s) used to solve structures: SHELXS86; program(s) used to refine structures: SHELXL93; molecular graphics: ORTEPII (Johnson, 1976).

The authors thank the National Science Foundation for financial support. The diffractometer was purchased with a grant from the National Institutes of Health.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1123). Services for accessing these data are described at the back of the journal.

References

Allegra, G. \& Ganis, P. (1962). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 33, 438-449.
Gallucci, J. C., Kozmina, N., Paquette, L. A., Zaegel. F., Meunier. P. \& Gautheron, B. (1997). Acta Cryst. C53, 1416-1420.
Gowik, P., Klapötke, T. \& Pickardt, J. (1990). J. Organomet. Chem. 393, 343-348.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210-214.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. Version 4.3.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1995). TEXSAN. Single Cřstal Structure Analysis Software. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381 , USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Paquette, L. A., Charumilind, P., Kravetz, T. M., Böhm, M. C. \& Gleiter, R. (1983). J. Am. Chem. Soc. 105, 3126-3135.
Paquette, L. A. \& Sivik, M. R. (1992). Organometallics, 11, 35033505.

Parthasarathi, V., Beurskens, P. T. \& Slot. H. J. B. (1983). Acta Cryst. A39, 860-864.
Petersen, J. L. (1980). Inorg. Chem. 19. 181-185.
Samuel, E., Rogers, R. D. \& Atwood. J. L. (1984). J. Crystallogr. Spectrosc. Res. 14, 573-579.
Sheldrick. G. M. (1990). Acta Crrst. A46. 467-473.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen. Germany.
Skapski. A. C. \& Troughton, P. G. H. (1970). Acta Cṇst. B26. 716722.

Spek, A. L. (1990). Acta Crrist. A46, C-34.
Thewalt. U. \& Schomburg. D. (1977). J. Organomet. Chem. 127. 169-174.

Acta Cryst. (1998). C54, 1612-1615

A Trinuclear Molybdenum Cluster Coordinated by \boldsymbol{o}-Nitrobenzoate

Ji-Bo Xia, Yuan-Gen Yao, Ling Wu, Xiao-Ying
Huang and Jia-Xi Lu
State Key Laboratory of Structural Chemistry; Fujian
Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's
Republic of China. E-mail: yvg@ms.fjirsm.ac.cn

(Received 28 November 1997; accepted 1 April 1998)

Abstract

The title compound, tris(diethyl dithiophosphato)$1 \kappa^{2} S, S^{\prime} ; 2 \kappa^{2} S, S^{\prime} ; 3 \kappa^{2} S, S^{\prime}-\mu$-o-nitrobenzoato- $2 \kappa O: 3 \kappa O^{\prime}$ -pyridine- $1 \kappa N$ - μ_{3}-thio-tri- μ-thio- $1: 2 \kappa^{2} S ; 1: 3 \kappa^{2} S ; 2: 3 \kappa^{2} S$ -triangulo-trimolybdenum $(3 \mathrm{Mo}-\mathrm{Mo}),\left[\mathrm{Mo}_{3} \mathrm{~S}_{4}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}\right.\right.$ $\left.\mathrm{O}_{4}\right)\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{PS}_{2}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$], was synthesized in a mixed solvent of acetonitrile and ethanol by a ligandsubstitution reaction in which o-nitrobenzoic acid replaces the bridging diethyl dithiophosphate (DTP) ligand. The average Mo-Mo bond distance is 2.731 (2) \AA. The substitution of o-nitrobenzoate for DTP shortens the Mo-Mo bond that it bridges to 2.693 (1) Å.

Comment

In the course of our study on the incomplete cubanetype $\mathrm{Mo}-\mathrm{S}(\mathrm{O})$ cluster compounds, one of the authors proposed that there is quasi-aromaticity in the puckered ring of the $\mathrm{Mo}_{3} \mathrm{~S}_{3}$ moiety (Chen et al., 1990). We were interested in studying the electron delocalization

